Single Molecule Fluorescence Microscopy on Planar Supported Bilayers
نویسندگان
چکیده
In the course of a single decade single molecule microscopy has changed from being a secluded domain shared merely by physicists with a strong background in optics and laser physics to a discipline that is now enjoying vivid attention by life-scientists of all venues (1). This is because single molecule imaging has the unique potential to reveal protein behavior in situ in living cells and uncover cellular organization with unprecedented resolution below the diffraction limit of visible light (2). Glass-supported planar lipid bilayers (SLBs) are a powerful tool to bring cells otherwise growing in suspension in close enough proximity to the glass slide so that they can be readily imaged in noise-reduced Total Internal Reflection illumination mode (3,4). They are very useful to study the protein dynamics in plasma membrane-associated events as diverse as cell-cell contact formation, endocytosis, exocytosis and immune recognition. Simple procedures are presented how to generate highly mobile protein-functionalized SLBs in a reproducible manner, how to determine protein mobility within and how to measure protein densities with the use of single molecule detection. It is shown how to construct a cost-efficient single molecule microscopy system with TIRF illumination capabilities and how to operate it in the experiment.
منابع مشابه
Supported bilayers at the vanguard of immune cell activation studies.
Biological adhesion between cells is critical for development of multicellular organisms and for the function of the adaptive immune system of vertebrates. A gap in understanding of adhesion systems arises from the difficulty of collecting quantitative data on the molecular interactions underlying adhesion, which is typically studied by population statistics such as percent adhesion in the pres...
متن کاملPCB association with model phospholipid bilayers.
We compare the association of an ortho-substituted and a planar PCB (polychlorinated biphenyls PCB-52 and PCB-77, respectively) with single-component phospholipid bilayers terminated with phosphocholine headgroups. First, fluorescence correlation spectroscopy (FCS) studies of diffusion on supported fluid-phase DLPC show that the ortho-substituted PCB diffuses more slowly, indicating either comp...
متن کاملHorizontal Bilayer for Electrical and Optical Recordings
Artificial bilayer containing reconstituted ion channels, transporters and pumps serve as a well-defined model system for electrophysiological investigations of membrane protein structure–function relationship. Appropriately constructed microchips containing horizontally oriented bilayers with easy solution access to both sides provide, in addition, the possibility to investigate these model bi...
متن کاملFunctional single-cell analysis of T-cell activation by supported lipid bilayer-tethered ligands on arrays of nanowells.
Supported lipid bilayers are an important biomolecular tool for characterizing immunological synapses. Immobilized bilayers presenting tethered ligands on planar substrates have yielded both spatio-temporal and structural insights into how T cell receptors (TCRs) reorganize during the initial formation of synapses upon recognition of peptide antigens bound to major histocompatibility complex (M...
متن کاملMorphological changes of supported lipid bilayers induced by lysozyme: planar domain formation vs. multilayer stacking.
Total internal reflection fluorescence microscopy (TIRFM) has been utilized to explore the effect of cationic protein lysozyme (Lz) on the morphology of solid-supported lipid bilayers (SLBs) comprised of zwitterionic lipid phosphatidylcholine (PC) and its mixture with anionic lipid cardiolipin (CL). Kinetic TIRFM imaging of different systems revealed subtle interplay between lipid lateral segre...
متن کامل